Parasites of Psittaciformes and Accipitriformes in Paraíba state, northeastern Brazil

Parasitas de Psittaciformes e Accipitriformes no estado da Paraíba, Brasil

Cristiane Maria Fernandes de Melo1; Jaqueline Bianque Oliveira2; Thais Ferreira Feitosa1*; Vinicius Longo Ribeiro Vilela1; Ana Célia Rodrigues Athayde1; Antônio Flávio Medeiros Dantas1; Paulo Guilherme Carniel Wagner1; Andrei Brum Febrônio1

1Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Campina Grande – UFCG, Patos, PB, Brasil
2Laboratório de Parasitologia Animal, Departamento de Biologia, Universidade Federal Rural de Pernambuco – UFRPE, Recife, PE, Brasil
3Centro de Triagem de Animais Selvagens – CETAS, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA, Cabeceiro, PB, Brasil

Received November 27, 2012
Accepted May 17, 2013

Abstract

In this study, we investigated the presence of gastrointestinal helminths in 97 captive birds (Psittaciformes and Accipitriformes) necropsied between June and December 2011 in the state of Paraíba, Brazil. Forty-three birds were infected. Psittaciformes were infected by nematode Ascaridia hermaphrodita (97.6%) and cestode Raillietina sp. (2.4%). A. hermaphrodita was found in all species of parrots and Raillietina sp. was found only in Amazona aestiva. A. hermaphrodita was the cause of death, by intestinal obstruction, in 14 of the 40 birds investigated. Accipitriformes were infected by nematode Synhimantus (Synhimantus) rectus (100%) and acanthocephalan Centrorhynchus tumidulus (50%). In Brazil, Diopsittaca nobilis and A. aestiva are reported for the first time as hosts of A. hermaphrodita and Raillietina sp., respectively. We concluded that Psittaciformes and Accipitriformes in captivity are affected by nematodes, cestodes and acanthocephalans and that implementation of control measures is essential.

Keywords: Acanthocephalans, accipitriformes, cestodes, nematodes, psittaciformes.

Resumo

Este estudo objetivou-se investigar a presença de parasitos gastrointestinais em aves de cativeiro da Ordem Psittaciformes e Accipitriformes no estado da Paraíba-Brasil. Foram necrospiadas 97 aves durante o período de junho a dezembro de 2011. Em 43 (44,3%) aves, foi detectada a presença de nematóides, cestóides e/ou acantocéfalos. A prevalência de parasitos gastrointestinais em Psittaciformes foi de 45,6% (41/88) e os helmintos identificados foram Ascaridia hermaphrodita (Ascaridoidea, Ascarididae) (40/41, 97,6%) e Raillietina sp. (Cyclophyllidea, Davaineidae) (1/41, 2,4%). A. hermaphrodita foi encontrada em todas as espécies de papagaios e Raillietina sp. foi encontrada apenas na Amazona aestiva. Em aves Accipitriformes, a prevalência foi de 22,2% (2/9) e os helmintos identificados foram Synhimantus (Synhimantus) rectus (Spirurida, Acuariidae) (2/2, 100%) e Centrorhynchus tumidulus (Acanthocephala, Centrorhynchidae) (1/2, 50%). Todos os parasitos encontrados neste estudo são relatados pela primeira vez em aves Psittaciformes e Accipitriformes no estado da Paraíba. No Brasil, Diopsittaca nobilis e A. aestiva são apresentados pela primeira vez como hospedeiros da A. hermaphrodita e Raillietina sp., respectivamente. Concluiu-se que aves Psittaciformes e Accipitriformes de cativeiro são afetadas por nematóides, cestóides e acantocéfalos, e que a implementação de medidas de controle é imprescindível.

Palavras-chave: Acantocéfalos, accipitriformes, cestóides, nematóides, psittaciformes.

Parasitic infections are one of the major health problems of wild birds kept in captivity (RITCHIE et al., 1994; GÓMEZ‐PUERTA et al., 2008; OLIVEIRA et al., 2011). Damage to the host and symptoms depend on the pathogenicity and intensity of infection and general condition of the animal (immune competence) (GODOY, 2007). Microorganisms of low pathogenicity can ultimately cause severe clinical disease in birds that are immunosuppressed, stressed, or present concomitant diseases (OLIVEIRA et al., 2011; SANTOS et al., 2011).

Parrots occur from tropical areas to cold regions (GODOY, 2007). Several diseases including endoparasitoses affect these birds (GONZÁLEZ‐ACUÑA et al., 2007; SANTOS et al., 2011). In
Parasites of Psittaciformes and Accipitriformes

A. amazonica, A. macao, Synhimantus, Amazona, and one scarlet macaw (Aratinga cactorum) were captured in Brazil. Helminths of parrots are well known, especially nematodes of the genus Ascaridia (GODOY, 2007). Intestinal obstruction due to high parasite loads of Ascaridia sp. is relatively common, causing intussusception and death (GODOY, 2007; GONZÁLEZ-ACUÑA et al., 2007).

Birds of prey are at the top of the food chain and are divided into two groups: diurnal (Accipitriformes, Falconiformes) and owls (Strigiformes) (SANMARTÍN et al., 2004; PEREIRA, 2007). Infections caused by endoparasites with no manifestation of clinical signs are common in these birds (PEREIRA, 2007; SANTOS et al., 2011). However, presence of parasites may become apparent in conditions of stress common in captivity, and gastrointestinal infections may be exacerbated by parasites causing diarrhea, anorexia, weight loss, and death (SANTOS et al., 2011).

Parasite identification is important for the knowledge of the most common species infecting wild birds in captivity, in addition to aid in the promotion of quick and efficient implementation of control measures (OLIVEIRA et al., 2011; SANTOS et al., 2011). In this study, we aimed to identify parasites of captive birds (Psittaciformes and Accipitriformes) in the state of Paraíba, Brazil.

The birds analyzed were from the Center for Wildlife Screening (Centro de Triagem de Animais Silvestres - CETAS) of the Brazilian Institute of Environment and Renewable Natural Resources (Instituto Brasileiro de Meio Ambiente e Recursos Naturais Renováveis - IBAMA). The CETAS is an agency responsible for receiving animals handed by the population and/or seized from animal trafficking. These animals are taken to these centers with a view to have their health status evaluated. Of the 97 birds necropsied between June and December 2011, 43 (44.3%) presented nematodes, 14/54 (25.9%) cestodes and/or acanthocephalans. Prevalence of helminths in necropsied psittacines. González-Acuña et al. (2007) and Hodová et al. (2008) reported that five species of Ascaridia are frequent in Psittaciformes; A. platyceri and A. hermaphrodita are the most common. In Brazil, Pinto et al. (1993) reported A. hermaphrodita as specific of psittacines of genera Amazona, Anodorhynchus, Ara, Aratinga, Brotogeris, Conurus, Pyrrhura, Psittacus and Pionus; this fact corroborates studies on psittacines in Argentina, Chile and Peru (MARTÍNEZ et al., 2003; MASELLO et al., 2006; GONZÁLEZ-ACUÑA et al., 2007; GÓMEZ-PUERTA et al., 2008).

In this study, 14 birds parasitized by A. hermaphrodita died due to parasite infection intensity. Ritchie et al. (1994) reported that ascariasis stands out as one of the most common gastrointestinal parasitic infections in psittacines and is associated with clinical signs such as weight loss, anorexia and, in severe cases, death. González-Acuña et al. (2007) and Hodová et al. (2008) reported intestinal obstruction by A. hermaphrodita as a cause of death in parrots. Hodová et al. (2008) obtained 242 specimens of helminths in necropsied psittacines. González-Acuña et al. (2007) observed severe lesions, with congestion of the intestinal mucosa and increased mucus production

In birds of prey, nematode Synhimantus (Synhimantus) rectus (Spirurida, Acanthocephalidae) (2/9, 22.2%) (Figure 2) was found in the ventricles and proventriculus, while acanthocephalan Centrorhynchus tumidulus (Acanthocephala, Centrorhynchidae) (1/9, 11.1%) was collected in the small intestine. Prevalence of helminths was 33.3% (3/9). Intensity of infection was low: S. rectus with two and four specimens and C. tumidulus with two specimens per animal. In this study, we found prevalence of 45.6%, similar to what was observed (48%) by Freitas et al. (2002) for parrots in captivity from the state of Pernambuco, Brazil.

A. hermaphrodita was the most frequent parasite. Hodová et al. (2008) reported that five species of Ascaridia are frequent in Psittaciformes; A. platyceri and A. hermaphrodita are the most common. In Brazil, Pinto et al. (1993) reported A. hermaphrodita as specific of psittacines of genera Amazona, Anodorhynchus, Ara, Aratinga, Brotogeris, Conurus, Pyrrhura, Psittacus and Pionus; this fact corroborates studies on psittacines in Argentina, Chile and Peru (MARTÍNEZ et al., 2003; MASELLO et al., 2006; GONZÁLEZ-ACUÑA et al., 2007; GÓMEZ-PUERTA et al., 2008).

In this study, 14 birds parasitized by A. hermaphrodita died due to parasite infection intensity. Ritchie et al. (1994) reported that ascariasis stands out as one of the most common gastrointestinal parasitic infections in psittacines and is associated with clinical signs such as weight loss, anorexia and, in severe cases, death. González-Acuña et al. (2007) and Hodová et al. (2008) reported intestinal obstruction by A. hermaphrodita as a cause of death in parrots. Hodová et al. (2008) obtained 242 specimens of helminths in necropsied psittacines. González-Acuña et al. (2007) observed severe lesions, with congestion of the intestinal mucosa and increased mucus production

In this study, the prevalence of helminths in birds of prey (22.2%) in this survey was lower than that found in Italy by Santoro et al. (2010), who, through necropsy, reported prevalence of 95% in free-living rapine birds. On the other hand, by fecal examination,
Santos et al. (2011) determined prevalence of 13.5% in birds of prey in captivity in Mexico.

In Europe, prevalence of 22.2% was observed for C. tumidulus. Centrorhynchus are considered common helminths in birds of prey, with prevalence ranging from 1.1% in Germany (KRONE, 2000) to 63.6% in Spain (SANMARTÍN et al., 2004) and 100% in Italy (SANTORO et al., 2010).

In the current study, the intensity of infection by S. rectus was low. Santoro et al. (2010) considered intestinal obstruction as a cause of death in the birds studied, which differs from this study. According to these authors, Synhimantus spp. and S. laticeps were associated with erosion and ulcers in the gastric mucosa, whereas infections with more than 100 specimens of Centrorhynchus spp. were associated with enteritis, diarrhea, cachexia, intussusception, and death. On the other hand, Kinsella et al. (1995) reported no injuries related to the presence of Synhimantus sp., S. hamatus, and C. kuntz in birds of prey in the United States, but called attention to the potential pathogenicity of C. kuntz, especially in young birds.

Little is known about the pathogenic effects of parasites in birds of prey (SANTORO et al., 2010). Although clinical signs of parasitism are infrequent, they may become evident under conditions of stress associated with high parasite loads (FREITAS et al., 2002; SANTORO et al., 2010; SANTOS et al., 2011). In this respect, diagnosis and treatment of parasitic diseases should be part of the routine health care of birds in captivity (SANTOS et al., 2011).

All parasites identified in this study were the first record in Psittaciformes and Accipitriformes in captivity in the state of Paraíba. In Brazil, D. nobilis and A. aestiva are presented for the first time as hosts of A. hermaphroditia and Raillietina sp., respectively. Helminth infections in wild birds kept in captivity should be prevented because, in great quantities, they can be lethal to these animals.

Acknowledgments

The authors are grateful to CNPq for the financial support. This study was approved by the System of Authorization and Information on Biodiversity - SISBIO/Chico Mendes Institute for Biodiversity Conservation - ICMBio (No. 29661-1).

References

Figure 2. A) Spicule from male Synhimantus(S) rectus; B) Posterior part from female Synhimantus(S) rectus.
Parasitas de Psittaciformes y Accipitriformes

